Deficits, public debt dynamics, and tax and spending multipliers

M. Denes, G. Eggertsson, and S. Gilbukh discussed by: James Costain, Banco de España

ECB, December 2012

Themes

- What are the effects of fiscal austerity?
- General point: the effects of any given instrument adjustment are never unambiguously defined unless we define the policy regime in which the adjustment occurs
- Paper calculates effects of short-run and long-run fiscal adjustments
- Under various financing assumptions
- Decomposes direct and indirect effects
- Paper compares how fiscal effects change when interest rates hit their lower bound
- At zero bound, fiscal adjustments may have powerful effects on output
- Warning: in severe crisis, cutting public spending or raising taxes may increase the deficit

Model summary

- The standard New Keynesian pieces:
- IS curve; AS curve
- (Sticky prices, flexible wages, no physical capital)
- Government budget constraint:
- Public spending, income taxes, consumption taxes, lump sum taxes
- Nominal public debt
- Monetary policy:
- Inflation peg
- Subject to zero lower bound

Model summary, continued.

- Crisis scenario
- Shock to discount factor alters natural real interest rate
- Zero lower bound may bind
- Simplified infinite-horizon timing
- "Short run": Persistent preference shock lowers natural interest rate
- "Short run" ends with probability $1-\mu$ per period
- "Long run": deterministic
- Study effects of fiscal adjustments
- Compare adjustments of spending and taxes
- Compare nonbinding/binding ZLB in short run
- Distinguish direct short-run effects of fiscal adjustments ...
- ... from the effects associated with financing those adjustments

Direct effects of policy changes

First study effects of short-run changes in instruments, without any further distortions.

- (1). Change one fiscal instrument in the short run, balance budget by adjusting lump sum taxes
- Change spending, income taxes, or consumption taxes
- Calculate short-run effects on output, deficit...
- ... conditional on nonbinding/binding zero lower bound

Indirect budgetary effects of policy changes

Next, study policy adjustments required for long-term budget balance.

- (2A.) Change one fiscal instrument in the long run, balance budget by adjusting lump sum taxes
- Calculate long-run effects on output
- Calculate short-run effects on output and deficit with/without ZLB
- (2B.) Faster debt growth in the short run, then bring debt back to steady state in long run by exponentially declining adjustment of one fiscal instrument
- Fix long-run half-life of deviations from steady state
- Calculate long-run convergence path
- Calculate short-run effect on output with/without ZLB
- (2C.) Larger primary deficit in the short run, then bring debt back to steady state in long run by exponentially declining adjustment of one fiscal instrument
- Fix long-run half-life of deviations from steady state
- Calculate long-run convergence path
- Calculate short-run effect on output with/without ZLB

Comments on the scenarios compared

- To simplify the algebra, changes in interest payments are assumed financed by lump sum taxes
- Considering this simplification, is it really necessary to distinguish these two?

$$
\begin{array}{ll}
(2 \mathrm{~B}): & \hat{b}_{t}-\hat{b}_{t-1}=\epsilon \\
(2 \mathrm{C}): & \hat{b}_{t}-\hat{b}_{t-1}-\frac{\bar{i} \bar{Y}}{\bar{b}} \hat{b}_{t-1}=\epsilon \tag{2}
\end{array}
$$

- A more informative alternative might be:
(2D.) Lower lump-sum taxes in the short run, then bring debt back to steady state in long run by exponentially declining adjustment of one fiscal instrument
- Fix long-run half-life of deviations from steady state
- Calculate long-run convergence path
- Calculate short-run effect on output with/without ZLB

Putting the pieces together

Now study a short-run change in government spending financed by long-run adjustments in spending or distorting taxes.

- Short-run output effect of changing government spending
\approx Direct effect of spending now on output now
+ Effect of spending now on deficit now
\times Effect on output now of paying off later one unit of deficit now (conditional on instruments chosen to pay down the debt)
- That is:

$$
\left.\left.\frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{T O T A L, \tau^{\prime}} \approx \frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{(1)}+\left.\frac{\Delta D_{t}}{\Delta G_{t}}\right|_{(1)} \times\left.\frac{\Delta Y_{t}}{\Delta D_{t}}\right|_{(2 C), \tau^{\prime}}
$$

Calculations for Great Depression ($i=0$)

- Short-run output effect of raising government spending
(conditional on lowering government spending later)

$$
\begin{aligned}
\left.\frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{T O T A L, G} & \left.\approx \frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{(1)}+\left.\frac{\Delta D_{t}}{\Delta G_{t}}\right|_{(1)} \times\left.\frac{\Delta Y_{t}}{\Delta D_{t}}\right|_{(2 C), G} \\
& \approx 2.2-0.3 \times 1.8=1.7
\end{aligned}
$$

- Short-run output effect of raising government spending (conditional on raising income taxes later)

$$
\begin{gathered}
\left.\left.\frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{T O T A L, \tau^{\prime}} \approx \frac{\Delta Y_{t}}{\Delta G_{t}}\right|_{(1)}+\left.\frac{\Delta D_{t}}{\Delta G_{t}}\right|_{(1)} \times\left.\frac{\Delta Y_{t}}{\Delta D_{t}}\right|_{(2 C), \tau^{\prime}} \\
\approx 2.2-0.3 \times(-1.9)=2.8
\end{gathered}
$$

- Short-run output effect of raising government spending (conditional on raising income taxes later)

$$
\approx 2.2-0.3 \times 2.2=1.5
$$

Is this an approximation?

- The formula might seem to have a chain rule in it, but it does not.
- Formula assumes the deficit that must be paid off is the one that would result if the deficit were to be paid off using lump sum taxes.
- Is there any reason to assume that the initial deficit occurring under lump-sum tax financing is approximately equal to the one occuring under distortionary financing?

Alternative decompositions

Consider:
B. History with $\Delta G_{S R}>0$ financed by lump sums

A. Baseline history

C. History with $\Delta G_{S R}>0$ financed by $\Delta G_{L R}<0$
D. History with lumps ${ }_{S R}<0$ financed by $\Delta G_{L R}<0$

- Approximation says:

$$
\Delta Y_{A \rightarrow C} \approx \Delta Y_{A \rightarrow B}+\Delta D_{A \rightarrow B} \times \frac{\Delta Y_{A \rightarrow D}}{\Delta D_{A \rightarrow D}}
$$

- Why should that be a good approximation?

Alternative decompositions

Consider:

B. History with $\Delta G_{S R}>0$ financed by lump sums

A. Baseline history

C. History with $\Delta G_{S R}>0$ financed by $\Delta G_{L R}<0$
D. History with lumps ${ }_{S R}<0$ financed by $\Delta G_{L R}<0$

- Exact depreciation is simply

$$
\Delta Y_{A \rightarrow C}=\Delta Y_{A \rightarrow B}+\Delta Y_{B \rightarrow C}
$$

- Can't $\Delta Y_{B \rightarrow C}$ be calculated analytically in this model (working backwards from LR equilibrium)?

The bigger picture

- Analytically tractable expressions for fiscal multipliers in standard textbook model are a valuable contribution
- Change at ZLB is strikingly large
- Important warning: in short run, public spending reductions may cause higher deficits!
- Nonetheless, let's remember that the effects of short-run adjustments are not the most important issue for Europeans to debate right now.
- For the Eurozone to function, member states must act to ensure their long-run solvency
- What kinds of fiscal rules guarantee long-run solvency?
- What structural reforms can get growth moving?
- "Austerity" is crucial, but the truly relevant constraint is the intertemporal budget constraint, not the short-run deficit per se.

